Package: pacta.aggregate.loanbook.plots (via r-universe) August 23, 2024 **Title** Functions to Help Interpret PACTA for Banks Results for Many Institutions Version 0.0.0.9001 **Description** This is an experimental package that contains functions to help interpret PACTA for Banks results, with a focus on making it easy to navigate and understand results across a large number of banks and loan books. **License** MIT + file LICENSE **Encoding UTF-8** **Roxygen** list(markdown = TRUE) RoxygenNote 7.2.3 **Imports** dplyr, ggplot2, glue, networkD3, r2dii.data, r2dii.plot, readr, rlang, tidyr, tibble, webshot, plotly, scales **Depends** R (>= 2.10) LazyData true **Suggests** knitr, rmarkdown, testthat (>= 3.0.0) Config/Needs/website rmi-pacta/pacta.pkgdown.rmitemplate VignetteBuilder knitr URL https://rmi-pacta.github.io/pacta.aggregate.loanbook.plots/ Config/testthat/edition 3 Repository https://rmi-pacta.r-universe.dev **RemoteUrl** https://github.com/rmi-pacta/pacta.aggregate.loanbook.plots RemoteRef HEAD **RemoteSha** 1bfa0892d36ca293cac5f62653654aa7a0b62326 2 abcd_test_data # **Contents** | | abcd_test_data | 2 | |-------|---|----| | | activity_units | 3 | | | aggregate_alignment_loanbook_exposure | 3 | | | calculate_company_aggregate_alignment_sda | 4 | | | calculate_company_aggregate_alignment_tms | 4 | | | calculate_company_tech_deviation | 5 | | | create_benchmark_loanbook | 6 | | | loanbook_test_data | 7 | | | plot_sankey | | | | plot_scatter | | | | plot_scatter_animated | | | | plot_timeline | 10 | | | prep_sankey | | | | prep_scatter | | | | prep_scatter_animated | | | | prep_timeline | | | | validate_data_has_expected_cols | | | | | | | Index | | 16 | | | | | | | | | | | | | | | | | ABCD test data # Description ABCD test data $abcd_test_data$ # Usage abcd_test_data #### **Format** An object of class tbl_df (inherits from tbl, data.frame) with 582 rows and 13 columns. activity_units 3 | activity_units | Units for economic activities per sector and technology | |----------------|---| | | * | #### **Description** Units for economic activities per sector and technology #### Usage ``` activity_units ``` #### **Format** An object of class tbl_df (inherits from tbl, data.frame) with 58 rows and 3 columns. ``` aggregate_alignment_loanbook_exposure ``` Return loan book level aggregation of company alignment metrics by exposure # Description Return loan book level aggregation of company alignment metrics by exposure #### Usage ``` aggregate_alignment_loanbook_exposure(data, matched, level = c("net", "bo_po")) ``` # Arguments data data.frame. Holds output pf company indicators matched data.frame. Holds matched and prioritised loan book level Character. Vector that indicates if the aggregate alignment metric should be re- turned based on the net technology deviations (net) or disaggregated into build- out and phaseout technologies (bo_po). ``` calculate_company_aggregate_alignment_sda ``` Return company level sector alignment metric for each company #### **Description** Return company level sector alignment metric for each company #### Usage ``` calculate_company_aggregate_alignment_sda(data, scenario_source = "geco_2021", scenario = "1.5c", time_frame = 5L) ``` #### **Arguments** data data.frame. Holds the PACTA for Banks SDA results on company level. scenario_source Character. Vector that indicates which scenario_source to use for reference in the calculation of the alignment metrics. Currently, the only supported value is "geco_2021". scenario Character. Vector that indicates which scenario to calculate the alignment metric for. Must be a scenario available from scenario_source. considered in the analysis. Standard time_frame in PACTA is five years. calculate_company_aggregate_alignment_tms Return company level sector alignment metric for each company with option to disaggregate by buildout / phaseout. #### **Description** Return company level sector alignment metric for each company with option to disaggregate by buildout / phaseout. ``` calculate_company_aggregate_alignment_tms(data, scenario_source = "geco_2021", scenario = "1.5c", level = c("net", "bo_po")) ``` #### **Arguments** data data.frame. Holds company-technology deviations based on PACTA for Banks TMS results. Must have been calculated according to the increasing/decreasing logic of the CA100+ calculation. scenario_source Character. Vector that indicates which scenario_source to use for reference in the calculation of the alignment metrics. Currently, the only supported value is "geco_2021". scenario Character. Vector that indicates which scenario to calculate the alignment metric for. Must be a scenario available from scenario_source. level Character. Vector that indicates if the aggreagte alignment metric should be re- turned based on the net technology deviations (net) or disaggregated into build- out and phaseout technologies (bo_po). calculate_company_tech_deviation Return company level technology deviations for TMS sectors. To be used as input into calculation of company level aggregate alignment metrics for production trajectory sectors. #### **Description** Return company level technology deviations for TMS sectors. To be used as input into calculation of company level aggregate alignment metrics for production trajectory sectors. #### Usage ``` calculate_company_tech_deviation(data, technology_direction, scenario_source = "geco_2021", scenario = "1.5c", bridge_tech = c("none", "gascap"), time_frame = 5L) ``` #### **Arguments** data data.frame. Holds the PACTA for Banks TMS results. Must have been calculated according to the increasing/decreasing logic of the CA100+ calculation and must return unweighted company level TMSR results. technology_direction data frame that indicates which technologies are to be considered phase down technologies versus build out technologies scenario_source Character. Vector that indicates which scenario_source to use for reference in the calculation of the alignment metrics. Currently, the only supported value is "geco_2021". scenario Character. Vector that indicates which scenario to calculate the alignment metric for. Must be a scenario available from scenario_source. bridge_tech Character. Vector that indicates if a technology is considered a bridge technol- ogy. I.e. if the scenario requires a temporary build out despite the need for a long term phase down. If so, the alignment metric can be treated differently than for other technologies. Currently, the only allowed values are ("none", "gascap"). Default is "none" which means that no special calculations are applied to any technology. time_frame Integer of length one. The number of forward looking years that should be considered in the analysis. Standard time_frame in PACTA is five years. create_benchmark_loanbook Return raw loan book containing the corporate economy benchmark #### **Description** Return raw loan book containing the corporate economy benchmark # Usage ``` create_benchmark_loanbook(data, scenario_source, start_year, region_isos, benchmark_region) ``` #### Arguments data frame containing the asset-based company data (ABCD) in PACTA for Banks format. scenario_source character vector of length 1. This is used to subset the allowed regions as defined in r2dii.data::region_isos. It is recommended to simply use the sce- nario_sourc_input used throughout the workflow. start_year character vector of length 1. Defines the initial year of the analysis. The com- pany weights will be picked based on the production capacity in the start_year. region_isos data frame containing the regional mapping for scenarios to country iso codes, following the format of r2dii.data::region_isos loanbook_test_data 7 ``` benchmark_region ``` character vector of length 1. Select the region based on which the benchmark loan book should be created. Only companies with production within the selected region will be kept. loanbook_test_data Loan book test data #### **Description** Loan book test data #### Usage ``` loanbook_test_data ``` #### **Format** An object of class tbl_df (inherits from tbl, data.frame) with 20 rows and 19 columns. plot_sankey Make a sankey plot #### **Description** Make a sankey plot #### Usage ``` plot_sankey(data, capitalise_node_labels = TRUE, save_png_to = NULL, png_name = "sankey.png", nodes_order_from_data = FALSE) ``` #### **Arguments** data data.frame. Should have the same format as output of prep_sankey() capitalise_node_labels Logical. Flag indicating if node labels should be converted into better looking capitalised form. save_png_to Character. Path where the output in png format should be saved png_name Character. File name of the output. 8 plot_scatter ``` nodes_order_from_data ``` Logical. Flag indicating if nodes order should be determined by an algorithm (in case of big datasets often results in a better looking plot) or should they be ordered based on data. #### **Examples** # TODO plot_scatter Plot alignment scatterplot #### **Description** Plot alignment scatterplot #### Usage ``` plot_scatter(data, sector = NULL, scenario_source = NULL, scenario = NULL, year = NULL, region = NULL, title = NULL, subtitle = NULL, alignment_limit = NULL, data_level = c("company", "bank"), cap_outliers = NULL, floor_outliers = NULL) ``` #### **Arguments** data frame. Should have the same format as output of prep_scatter() and contain columns: 'name', 'buildout', phaseout', 'net'. sector Character. Sector name to be used in the plot title. scenario_source Character. Scenario source to be used in the plot caption. scenario Character. Scenario name to be used in the plot caption. year Integer. Year of the analysis to be used in the plot caption. region Character. Region to be used in the plot caption. title Character. Custom title if different than default. subtitle Character. Custom subtitle if different than default. plot_scatter_animated 9 alignment_limit Numeric. Limit to be applied to the x- and y-axis scales and to alignment values for colouring. By default the maximum absolute alignment value of is used. data_level Character. Level of the plotted data. Can be 'bank' or 'company'. ${\tt cap_outliers} \qquad {\tt Numeric.} \quad {\tt Cap} \ {\tt which} \ {\tt should} \ {\tt be} \ {\tt applied} \ {\tt to} \ {\tt the} \ {\tt alignment} \ {\tt values} \ {\tt in} \ {\tt the} \ {\tt data}.$ Values bigger than cap are plotted on the border of the plot. floor_outliers Numeric. Floor which should be applied to the alignment values in the data. Values smaller than floor are plotted on the border of the plot. #### Value ``` object of type "ggplot" ``` #### **Examples** #TODO plot_scatter_animated Plot alignment scatterplot # Description Plot alignment scatterplot #### Usage ``` plot_scatter_animated(data, data_level = c("company", "bank"), sector = NULL, scenario_source = NULL, scenario = NULL, region = NULL, title = NULL, subtitle = NULL, alignment_limit = NULL, cap_outliers = NULL, floor_outliers = NULL) ``` #### **Arguments** data.frame. Should have the same format as output of prep_scatter_animated() and contain columns: 'name', 'buildout', 'phaseout', 'net' and 'year'. data_level Character. Level of the plotted data. Can be 'bank' or 'company'. sector Character. Sector name to be used in the plot title. 10 plot_timeline scenario_source Character. Scenario source to be used in the plot caption. scenario Character. Scenario name to be used in the plot caption. region Character. Region to be used in the plot caption. title Character. Custom title if different than default. subtitle Character. Custom subtitle if different than default. alignment_limit Numeric. Limit to be applied to the x- and y-axis scales and to alignment values for colouring. By default the maximum absolute alignment value from data is used. Values bigger than cap are plotted on the border of the plot. floor_outliers Numeric. Floor which should be applied to the alignment values in the data. Values smaller than floor are plotted on the border of the plot. #### Value ``` object of type "plotly" ``` #### **Examples** #TODO plot_timeline Plot alignment timeline #### **Description** Plot alignment timeline ``` plot_timeline(data, sector = NULL, scenario_source = NULL, scenario = NULL, region = NULL, title = NULL, subtitle = NULL, alignment_limits = NULL) ``` prep_sankey 11 #### Arguments data.frame Should have the same format as output of prep_timeline() and contain columns: 'direction', 'year', 'exposure_weighted_net_alignment', 'group_id'. sector Character. Sector name to be used in the plot title. scenario_source Character. Scenario source to be used in the plot caption. scenario Character. Scenario name to be used in the plot caption. region Character. Region to be used in the plot caption. title Character. Custom title if different than default. subtitle Character. Custom subtitle if different than default. alignment_limits Numeric vector of size 2. Limits to be applied to alignment values for colouring. By default maximum absolute value of 'exposure_weighted_net_alignment' is used. #### Value ``` object of type "ggplot" ``` #### **Examples** #TODO prep_sankey Prepare data to plot using plot_sankey() #### Description Prepare data to plot using plot_sankey() ``` prep_sankey(data_alignment, matched_loanbook, region, year, middle_node, middle_node2 = NULL) ``` 12 prep_scatter #### Arguments data_alignment data.frame. Holds aggregated alignment metrics per company for tms sectors. Must contain columns: group_id, name_abcd, sector. matched_loanbook data.frame. Holds the matched loan books of a set of groups. Must include a column group_id and loan_size_outstanding. region Character. Region to filter data_alignment data frame on. year Integer. Year on which data_alignment should be filtered. middle_node Character. Column specifying the middle nodes to be plotted in sankey plot. Must be present in data_alignment. middle_node2 Character. Column specifying the middle nodes to be plotted in sankey plot. Must be present in data_alignment. #### Value data.frame #### **Examples** # TODO prep_scatter Prepare data to plot scatterplot # Description Prepare data to plot scatterplot ``` prep_scatter(data_bopo, data_net, data_level = c("bank", "company"), year, sector, region, group_ids_to_plot = NULL) ``` prep_scatter_animated 13 #### **Arguments** data.frame. Data containing buildout and phaseout alignment values. Must data_bopo contain columns: 'group_id', 'year', 'sector', 'region', 'direction' and either 'name_abcd' and 'alignment_metric' or 'exposure_weighted_net_alignment'. data_net data.frame. Data containing net alignment values. Must contain columns: 'group_id', 'year', 'sector', 'region', 'direction' and either 'name_abcd' and 'alignment_metric' or 'exposure_weighted_net_alignment'. Character. Level of the plotted data. Can be 'bank' or 'company'. data_level Integer. Year on which the data should be filtered. year sector Character. Sector to filter data on. region Character. Region to filter data on. group_ids_to_plot #### Value data.frame #### **Examples** #TODO prep_scatter_animated Prepare data to plot animated scatterplot Character vector. Bank ids to filter on. # **Description** Prepare data to plot animated scatterplot ``` prep_scatter_animated(data_bopo, data_net, data_level = c("bank", "company"), sector, region, group_ids_to_plot = NULL) ``` 14 prep_timeline #### Arguments data_bopo data.frame. Data containing buildout and phaseout alignment values. Must contain columns: 'group_id', 'year', 'sector', 'region', 'direction' and either 'name_abcd' and 'alignment_metric' or 'exposure_weighted_net_alignment'. data_net data.frame. Data containing net alignment values. Must contain columns: 'group_id', 'year', 'sector', 'region', 'direction' and either 'name_abcd' and 'alignment_metric' or 'exposure_weighted_net_alignment'. data_level Character. Level of the plotted data. Can be 'bank' or 'company'. sector Character. Sector to filter data on. region Character. Region to filter data on. group_ids_to_plot Character vector. Group ids to filter on. #### Value data.frame # Examples #TODO prep_timeline Prepare data to plot timeline #### **Description** Prepare data to plot timeline #### Usage ``` prep_timeline(data, sector, region, group_ids_to_plot) ``` #### **Arguments** data.frame. Must contain columns: 'direction', 'year', 'exposure_weighted_net_alignment', 'group_id', 'sector'. sector Character. Sector to filter data on. region Character. Region to filter data on. group_ids_to_plot Character vector. Group ids to filter on. #### Value data.frame # Examples #TODO $validate_data_has_expected_cols$ Validate that a data frame contains expected columns # Description Validate that all expected columns for an operation are given in a data frame. # Usage ``` validate_data_has_expected_cols(data, expected_columns) ``` # Arguments data data frame that is to be validated expected_columns Character vector listing the expected columns # **Index** ``` * datasets abcd_test_data, 2 activity_units, 3 loanbook_test_data, 7 abcd_test_data, 2 activity_units, 3 aggregate_alignment_loanbook_exposure, calculate_company_aggregate_alignment_sda, calculate_company_aggregate_alignment_tms, calculate_company_tech_deviation, 5 create_benchmark_loanbook, 6 loanbook_test_data, 7 plot_sankey, 7 plot_scatter, 8 plot_scatter_animated, 9 plot_timeline, 10 prep_sankey, 11 prep_scatter, 12 prep_scatter_animated, 13 prep_timeline, 14 validate_data_has_expected_cols, 15 ```