Package 'pacta.executive.summary'

Title: Creates Plots for the PACTA COP Executive Summary
Description: This package contains plotting functions and a template for generating the executive summary that displays aggregated results of a PACTA COP exercise.
Authors: Monika Furdyna [aut, ctr, cre]
Maintainer: Monika Furdyna <[email protected]>
License: MIT + file LICENSE
Version: 0.1.1.9002
Built: 2025-01-08 05:59:32 UTC
Source: https://github.com/rmi-pacta/pacta.executive.summary

Help Index


Get the path to the blank template PDF

Description

Get the path to the blank template PDF

Usage

blank_pdf()

Value

A single string containing the path to a blank template PDF.


Lookup valid values

Description

Lookup valid values

Usage

time_horizon_lookup

Format

An object of class numeric of length 1.


Sector and technology names mapped from P4I to P4B style

Description

A data set containing the names of sectors and technologies according to P4I and P4B conventions.

Usage

p4i_p4b_sector_technology_mapper

Format

An object of class tbl_df (inherits from tbl, data.frame) with 28 rows and 4 columns.


Create a scenario alignment table

Description

Create a scenario alignment table

Usage

plot_alignment_table(data)

Arguments

data

A data frame. In principle, an output of prep_alignment_table(). Requirements:

  • asset_class must have a single value.

  • Must have columns: asset_class,sector,technology, entity, aligned_scen_temp, perc_aum.

  • entity must contain at least one value of "portfolio".

  • sector must be one of: "power", "fossil_fuels", "automotive".

  • aligned_scen_temp must be one of: ">3.2C", "2.7-3.2C", "<2C".

  • perc_aum must be a percentage in decimal format, with values between 0 and 1.

Value

an object of class "ggplot".

Examples

library(dplyr)

plot_alignment_table(toy_data_alignment_table %>% filter(asset_class == "equity"))

Create a diagram of asset class coverage

Description

Create a diagram of asset class coverage

Usage

plot_diagram(data = NULL)

Arguments

data

A data frame. In principle an output of prep_diagram(). Requirements:

  • Must have columns: asset_class, exposure_portfolio, exposure_asset_class, exposure_asset_class_perc, exposure_pacta, exposure_pacta_perc_asset_class_exposure, emissions_pacta_perc, emissions_pacta.

  • Must have two rows.

  • asset_class must have values: "equity", "bonds".

  • exposure_portfolio, exposure_asset_class, exposure_asset_class_perc, exposure_pacta, exposure_pacta_perc_asset_class_exposure, emissions_pacta_perc, emissions_pacta must be numeric.

  • exposure_asset_class_perc, exposure_pacta_perc_asset_class_exposure, emissions_pacta_perc must be a percentage in decimal format, with values between 0 and 1.

Value

An object of class "htmlwidget".

Examples

plot_diagram(toy_data_diagram)

Create a plot showing scorecard emissions

Description

Create a plot showing scorecard emissions

Usage

plot_emissions_scorecard(data)

Arguments

data

A data frame. In principle, an output of prep_emissions_scorecard(). Requirements:

  • Must have columns: asset_class, entity, emissions.

  • asset_class must be one of: "equity", "bonds".

  • entity must be one of: "portfolio", "benchmark".

  • emissions must be numeric.

Value

an object of class "ggplot".

Examples

plot_emissions_scorecard(toy_data_emissions_scorecard)

Create a plot showing exposure to sectors relevant to scorecard

Description

Create a plot showing exposure to sectors relevant to scorecard

Usage

plot_exposures_scorecard(data)

Arguments

data

A data frame. In principle, an output of prep_exposures_scorecard(). Requirements:

  • Must have columns: asset_class, sector_or_tech, exposure_perc_aum.

  • sector_or_tech must be one of: "coal", "other_fossil_fuels", "fossil_power", "renewables_power".

  • exposure_perc_aum must be a percentage in decimal format, with values between 0 and 1.

Value

an object of class "ggplot".

Examples

plot_exposures_scorecard(toy_data_exposures_scorecard)

Create a bar plot showing exposure to a sector

Description

Create a bar plot showing exposure to a sector

Usage

plot_exposures_survey(data)

Arguments

data

A data frame. In principle, an output of prep_exposures_survey(). Requirements:

  • Must have columns: asset_class, entity, sector, exposure_perc_aum.

  • asset_class must have a single value.

  • entity must be one of: "portfolio", "peers".

  • sector must be one of PACTA sectors. Run names(r2dii.colours::colour_aliases_pacta) for the list of values.

  • exposure_perc_aum must be a percentage in decimal format, with values between 0 and 1.

Value

an object of class "ggplot".

Examples

data <- toy_data_exposures_survey %>%
  dplyr::filter(asset_class == "equity", technology == "coal")

plot_exposures_survey(data)

Create a bar plot with exposures to fossil fuels

Description

Create a bar plot with exposures to fossil fuels

Usage

plot_fossil_bars(data)

Arguments

data

A data frame. In principle, an output of prep_fossil_bars(). Requirements:

  • Must have columns: entity_name, entity_type,asset_class,tech, perc_aum.

  • tech column must only have following values: "coal", "oil", "gas"

  • perc_aum must be a percentage in decimal format, with values between 0 and 1.

Value

an object of class "ggplot".

Examples

plot_fossil_bars(toy_data_fossil_bars)

Create a bar plot with exposures to low and high carbon technologies

Description

Create a bar plot with exposures to low and high carbon technologies

Usage

plot_green_brown_bars(data)

Arguments

data

A data frame. In principle, an output of prep_green_brown_bars(). Requirements:

  • Must have columns: asset_class,tech_type, sector, perc_sec_exposure, perc_tech_exposure.

  • tech_type column must only have following values: "green", "nuclear", "brown", "other".

  • perc_tech_exposure and perc_sec_exposure must be percentages in decimal format, with values between 0 and 1.

Value

an object of class "ggplot".

Examples

plot_green_brown_bars(toy_data_green_brown_bars)

Create a scatter plot of exposure to low-carbon technology vs. alignment score

Description

Create a scatter plot of exposure to low-carbon technology vs. alignment score

Usage

plot_scatter(data)

Arguments

data

A data frame. In principle, an output of prep_scatter(). Requirements:

  • asset_class must have a single value.

  • Must have columns: asset_class,tech_mix_green,score, entity_name, entity_type.

  • entity_type column must be factor and only have following values: "average", "this_portfolio", "peer", "benchmark".

  • tech_mix_green must be a percentage in decimal format, with values between 0 and 1.

  • score must be a number between 0 and 100.

Value

an object of class "ggplot".

Examples

library(dplyr)

plot_scatter(toy_data_scatter %>% filter(asset_class == "equity"))

Create a plot showing aggregated scores for portfolio and peers

Description

Create a plot showing aggregated scores for portfolio and peers

Usage

plot_scores(data)

Arguments

data

A data frame. In principle, an output of prep_scores(). Requirements:

  • Must have columns: asset_class,scope,entity, sector, score.

  • asset_class must have a single value.

  • scope must be one of: "portfolio", "sector".

  • entity must have following values: "this_portfolio", "peers".

  • sector must be one of: "power", "automotive", "coal", "oil", "gas", "steel", "aviation" or NA in case of scope == "portfolio".

  • score must be one of: "A+", "A", "B", "C", "D", "E".

Value

an object of class "ggplot".

Examples

library(dplyr)

plot_scores(toy_data_scores %>% filter(asset_class == "equity"))

Create a plot showing aggregated score in scorecard

Description

Create a plot showing aggregated score in scorecard

Usage

plot_scores_scorecard(data)

Arguments

data

A data frame. In principle, an output of prep_scores_scorecard(). Requirements:

  • Must have columns: asset_class, score.

  • asset_class must be one of: "equity", "bonds.

  • score must be one of: "A+", "A", "B", "C", "D", "E".

Value

an object of class "ggplot".

Examples

data <- toy_data_scores %>%
  dplyr::filter(
    scope == "portfolio",
    entity == "this_portfolio"
  )
plot_scores_scorecard(data)

Prepare data input for plotting technology alignment table

Description

Prepare data input for plotting technology alignment table based on PACTA for investors output files. These files must have been wrangled with prep_data_executive_summary() before they can be passed to this function.

Usage

prep_alignment_table(
  results_portfolio,
  peers_results_aggregated,
  asset_class = c("equity", "bonds"),
  scenario_source = "WEO2023"
)

Arguments

results_portfolio

Data frame that contains pre-wrangled portfolio level PACTA results from a PACTA for investors analysis.

peers_results_aggregated

Data frame that contains pre-wrangled aggregate peer group level PACTA results from a PACTA for investors analysis.

asset_class

Character defining the asset class of the data. Must be either "equity" or "bonds"

scenario_source

Character. Must be a scenario_source featured in the scenario_thresholds data set.

Value

data.frame


Prepare data input for climate strategy metrics (engagement) in the scorecard

Description

Prepare data input for climate strategy metrics (engagement) in the scorecard section based on COP survey results. The input data sets are pre-calculated and accessed via the directories pertaining to the given user_id.

Usage

prep_climate_strategy_scorecard_engagement(
  data,
  data_peers,
  peer_group = c("pensionfund", "assetmanager", "bank", "insurance", "other")
)

Arguments

data

Data frame that contains pre-calculated climate strategy info on client engagement on the individual user level, based on the responses to the COP survey.

data_peers

Data frame that contains pre-calculated climate strategy info on peer level client engagement, based on the responses to the COP survey.

peer_group

Character. Peer group of the analysed portfolio.

Value

list of data.frames


Prepare data input for climate strategy metrics (initiatives) in the scorecard

Description

Prepare data input for climate strategy metrics (initiatives) in the scorecard section based on COP survey results. The input data sets are pre-calculated and accessed via the directories pertaining to the given user_id.

Usage

prep_climate_strategy_scorecard_initiatives(
  data,
  data_peers,
  peer_group = c("pensionfund", "assetmanager", "bank", "insurance", "other")
)

Arguments

data

Data frame that contains pre-calculated climate strategy info on participation in initiatives on the individual user level, based on the responses to the COP survey.

data_peers

Data frame that contains pre-calculated climate strategy info on peer level participation in initiatives, based on the responses to the COP survey.

peer_group

Character. Peer group of the analysed portfolio.

Value

list of data.frames


Prepare data input for climate strategy metrics (voting rights) in the scorecard

Description

Prepare data input for climate strategy metrics (voting rights) in the scorecard section based on COP survey results. The input data sets are pre-calculated and accessed via the directories pertaining to the given user_id.

Usage

prep_climate_strategy_scorecard_voting(
  data,
  data_peers,
  peer_group = c("pensionfund", "assetmanager", "bank", "insurance", "other")
)

Arguments

data

Data frame that contains pre-calculated climate strategy info on use of voting rights on the individual user level, based on the responses to the COP survey.

data_peers

Data frame that contains pre-calculated climate strategy info on peer level use of voting rights, based on the responses to the COP survey.

peer_group

Character. Peer group of the analysed portfolio.

Value

list of data.frames


Prepares data inputs needed for rendering the executive summary

Description

Prepares data inputs needed for rendering the executive summary

Usage

prep_data_executive_summary(
  investor_name,
  portfolio_name,
  peer_group,
  start_year,
  scenario_source,
  scenario_selected,
  scenario_geography,
  equity_market,
  portfolio_allocation_method_equity,
  portfolio_allocation_method_bonds,
  green_techs,
  equity_results_portfolio,
  bonds_results_portfolio,
  peers_equity_results_aggregated,
  peers_bonds_results_aggregated,
  peers_equity_results_individual,
  peers_bonds_results_individual,
  indices_equity_results_portfolio,
  indices_bonds_results_portfolio,
  audit_file,
  emissions_portfolio,
  index_dir
)

Arguments

investor_name

Some description

portfolio_name

Some description

peer_group

Some description

start_year

Some description

scenario_source

Some description

scenario_selected

Some description

scenario_geography

Some description

equity_market

Some description

portfolio_allocation_method_equity

Some description

portfolio_allocation_method_bonds

Some description

green_techs

Some description

equity_results_portfolio

Some description

bonds_results_portfolio

Some description

peers_equity_results_aggregated

Some description

peers_bonds_results_aggregated

Some description

peers_equity_results_individual

Some description

peers_bonds_results_individual

Some description

indices_equity_results_portfolio

Some description

indices_bonds_results_portfolio

Some description

audit_file

Some description

emissions_portfolio

Some description

index_dir

Directory containing .rds files with index benchmarks

Value

data.frame


Title

Description

Title

Usage

prep_diagram(audit_data = NULL, emissions_data = NULL, currency_exchange_value)

Arguments

audit_data

Some arg

emissions_data

Some arg

currency_exchange_value

currency exchange rate (USD / currency)

Value

Some output


Title

Description

Title

Usage

prep_emissions_scorecard(
  emissions_data = NULL,
  audit_data,
  currency_exchange_value
)

Arguments

emissions_data

Some arg

audit_data

Some arg

currency_exchange_value

Some arg

Value

Some output data


Prepare data input for plotting exposure chart on the climate score card

Description

Prepare data input for plotting exposure chart on the climate score card based on PACTA for investors output files. These files must have been wrangled with prep_data_executive_summary() before they can be passed to this function.

Usage

prep_exposures_scorecard(results_portfolio, scenario_selected = "NZE_2050")

Arguments

results_portfolio

Data frame that contains pre-wrangled portfolio level PACTA results from a PACTA for investors analysis.

scenario_selected

Character. Must be a scenario featured in the scenario_thresholds data set. Default is "1.5C-Unif", which is the 1.5°C scenario from GECO2021.

Value

data.frame


Prepare data input for plotting exposure to fossil fuels in survey section

Description

Prepare data input for plotting exposure to fossil fuels in survey section based on PACTA for investors output files. These files must have been wrangled with prep_data_executive_summary() before they can be passed to this function.

Usage

prep_exposures_survey(
  results_portfolio,
  peers_results_aggregated,
  technology = c("coal", "oil", "gas"),
  asset_class = c("equity", "bonds")
)

Arguments

results_portfolio

Data frame that contains pre-wrangled portfolio level PACTA results from a PACTA for investors analysis.

peers_results_aggregated

Data frame that contains pre-wrangled aggregate peer group level PACTA results from a PACTA for investors analysis.

technology

Character. Must be of length 1 and either coal or oil or gas.

asset_class

Character. Must be of length 1 and either equity or bonds.

Value

data.frame


Prepare data input for plotting upstream fossil fuel exposure

Description

Prepare data input for plotting upstream fossil fuel exposure based on PACTA for investors output files. These files must have been wrangled with prep_data_executive_summary() before they can be passed to this function.

Usage

prep_fossil_bars(
  results_portfolio,
  peers_results_aggregated,
  indices_results_portfolio,
  scenario_selected = "NZE_2050"
)

Arguments

results_portfolio

Data frame that contains pre-wrangled portfolio level PACTA results from a PACTA for investors analysis.

peers_results_aggregated

Data frame that contains pre-wrangled aggregate peer group level PACTA results from a PACTA for investors analysis.

indices_results_portfolio

Data frame that contains pre-wrangled PACTA results for indices from a PACTA for investors analysis.

scenario_selected

Character. Must be a scenario featured in the scenario_thresholds data set. Defaults to "1.5C-Unif" from the GECO2021 scenario source.

Value

data.frame


Prepare data input for plotting green brown bar chart

Description

Prepare data input for plotting green brown bar chart based on PACTA for investors output files. These files must have been wrangled with prep_data_executive_summary() before they can be passed to this function.

Usage

prep_green_brown_bars(results_portfolio, scenario_selected = "NZE_2050")

Arguments

results_portfolio

Data frame that contains pre-wrangled portfolio level PACTA results from a PACTA for investors analysis.

scenario_selected

Character. Must be a scenario featured in the scenario_thresholds data set. Default is "1.5C-Unif", which is the 1.5°C scenario from GECO2021.

Value

data.frame


Prepare data input for share of net zero committed companies in scorecard

Description

Prepare data input for share of net zero committed companies in scorecard based on PACTA for investors output files.

Usage

prep_net_zero_commitments(
  total_portfolio,
  peer_group = c("pensionfund", "assetmanager", "bank", "insurance", "other"),
  fin_data_net_zero_targets,
  peers_net_zero_commitment
)

Arguments

total_portfolio

Data frame. Contains processed input of the PACTA for Investors calculation.

peer_group

Character. Peer group of the analysed portfolio.

fin_data_net_zero_targets

Data frame. Contains information on which ISINs belong to companies that have committed to SBTI net zero targets.

peers_net_zero_commitment

DataFrame. Contains informations on results at peer group level to be compared with portfolio

Value

data.frame


Title

Description

Title

Usage

prep_scatter(
  results_portfolio,
  peers_results_aggregated,
  peers_results_individual,
  indices_results_portfolio,
  scenario_source = "WEO2023",
  scenario_selected = "NZE_2050",
  asset_class = c("equity", "bonds")
)

Arguments

results_portfolio

Some arg

peers_results_aggregated

Some arg

peers_results_individual

Some arg

indices_results_portfolio

Some arg

scenario_source

Some arg

scenario_selected

Some arg

asset_class

Some arg

Value

Some output


Prepare data input for plotting aggregate climate scores

Description

Prepare data input for plotting aggregate climate scores based on PACTA for investors output files. These files must have been wrangled with prep_data_executive_summary() before they can be passed to this function.

Usage

prep_scores(
  results_portfolio,
  peers_results_aggregated,
  asset_class = c("equity", "bonds"),
  scenario_source = "WEO2023"
)

Arguments

results_portfolio

Data frame that contains pre-wrangled portfolio level PACTA results from a PACTA for investors analysis.

peers_results_aggregated

Data frame that contains pre-wrangled aggregate peer group level PACTA results from a PACTA for investors analysis.

asset_class

Character. Must be either equity or bonds.

scenario_source

Character. Must be a scenario_source featured in the scenario_thresholds data set.

Value

data.frame


Prepare share of portfolio emissions covered by aggregate score analysis

Description

Prepare share of portfolio emissions covered by aggregate score analysis

Usage

prep_scores_emissions_scorecard(emissions_data, log_dir = .GlobalEnv$log_dir)

Arguments

emissions_data

Data frame that contains pre-wrangled emissions data

log_dir

Path to log file

Value

numeric


Prepare share of portfolio emissions covered by aggregate score analysis

Description

Prepare share of portfolio emissions covered by aggregate score analysis

Usage

prep_scores_exposure_scorecard(
  audit_data,
  currency_exchange_value,
  total_portfolio_value_curr,
  log_dir = .GlobalEnv$log_dir
)

Arguments

audit_data

Data frame that contains pre-wrangled audit data

currency_exchange_value

Numeric vector with exchange rate

total_portfolio_value_curr

Numeric vector with total portfolio value in target currency

log_dir

Path to log file

Value

numeric


Prepare data input for plotting aggregate climate scores in the scorecard section

Description

Prepare data input for plotting aggregate climate scores in the scorecard section based on PACTA for investors output files. These files must have been wrangled with prep_data_executive_summary() before they can be passed to this function. This simply calls prep_scores() and filters the appropriate values.

Usage

prep_scores_scorecard(results_portfolio, scenario_source = "WEO2023")

Arguments

results_portfolio

Data frame that contains pre-wrangled portfolio level PACTA results from a PACTA for investors analysis.

scenario_source

Character. Must be a scenario_source featured in the scenario_thresholds data set.

Value

data.frame


Sector level carbon budgets for scenarios

Description

A data set containing the carbon budgets by sector until 2030.

Usage

remaining_carbon_budgets

Format

An object of class tbl_df (inherits from tbl, data.frame) with 8 rows and 5 columns.


Renders executive summary

Description

Renders executive summary

Usage

render_executive_summary(
  data,
  language,
  output_dir,
  exec_summary_dir,
  survey_dir,
  score_card_dir,
  analysis_inputs_dir,
  file_name = "template.Rmd",
  investor_name,
  portfolio_name,
  peer_group,
  total_portfolio,
  scenario_source = "WEO2023",
  scenario_selected = "NZE_2050",
  currency_exchange_value,
  log_dir
)

Arguments

data

List of data frames in the format returned by prep_data_executive_summary()

language

Character single, valid two letter language identifier in uppercase e.g. "EN"

output_dir

Character single, valid filepath to a directory where the output will be saved

exec_summary_dir

Character single, valid filepath to a directory that contains the template, e.g. system.file("extdata", "PA2022CH_en_exec_summary", package = "pacta.executive.summary")

survey_dir

Character single, valid filepath to a directory that contains the survey files for the user

score_card_dir

Character single, valid filepath to a directory that contains score card files for the user

analysis_inputs_dir

Character single, valid filepath to a PACTA analysis results directory that contains the SBTi data merged with financial data in the COP case

file_name

Character single, valid filename of the Rmd template file, e.g. "template.Rmd"

investor_name

Character single string specifying the investor name

portfolio_name

Character single string specifying the portfolio name

peer_group

Character single string specifying the peer group

total_portfolio

Data frame that contains the total portfolio as found in the standard PACTA processed inputs file "total_portfolio.rds"

scenario_source

Character single string specifying the selected scenario source, e.g. "GECO2023"

scenario_selected

Character single string specifying the selected scenario, e.g. "1.5C"

currency_exchange_value

Numeric single numeric value specifying the exchange rate from USD into the desired display currency, e.g. 1.03

log_dir

Character single, valid filepath to a directory that will contain the log file

Value

a pdf document written to output_dir


Scenario names mapped to temperature thresholds

Description

A data set containing the names of scenarios mapped to thresholds of likely climate outcomes.

Usage

scenario_thresholds

Format

An object of class tbl_df (inherits from tbl, data.frame) with 9 rows and 3 columns.


An example output data of prep_alignment_table()

Description

Dataset imitating the output of prep_alignment_table() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_alignment_table

Format

An object of class tbl_df (inherits from tbl, data.frame) with 40 rows and 7 columns.

See Also

Other datasets: toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_alignment_table

An example output data of prep_diagram()

Description

Dataset imitating the output of prep_diagram() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_diagram

Format

An object of class tbl_df (inherits from tbl, data.frame) with 2 rows and 8 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_diagram

An example output data of prep_emissions_scorecard()

Description

Dataset imitating the output of prep_emissions_scorecard() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_emissions_scorecard

Format

An object of class tbl_df (inherits from tbl, data.frame) with 4 rows and 3 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_emissions_scorecard

An example output data of prep_exposures_scorecard()

Description

Dataset imitating the output of prep_exposures_scorecard() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_exposures_scorecard

Format

An object of class tbl_df (inherits from tbl, data.frame) with 8 rows and 3 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_exposures_scorecard

An example output data of prep_exposures_survey()

Description

Dataset imitating the output of prep_exposures_survey() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_exposures_survey

Format

An object of class tbl_df (inherits from tbl, data.frame) with 12 rows and 4 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_exposures_survey

An example output data of prep_fossil_bars()

Description

Dataset imitating the output of prep_fossil_bars() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_fossil_bars

Format

An object of class tbl_df (inherits from tbl, data.frame) with 18 rows and 7 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_fossil_bars

An example output data of prep_green_brown_bars()

Description

Dataset imitating the output of prep_green_brown_bars() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_green_brown_bars

Format

An object of class tbl_df (inherits from tbl, data.frame) with 18 rows and 6 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_scatter, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_green_brown_bars

An example output data of prep_scatter()

Description

Dataset imitating the output of prep_scatter() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_scatter

Format

An object of class tbl_df (inherits from tbl, data.frame) with 14 rows and 6 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scores, toy_data_scores_scorecard_re

Examples

toy_data_scatter

An example output data of prep_scores()

Description

Dataset imitating the output of prep_scores() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_scores

Format

An object of class tbl_df (inherits from tbl, data.frame) with 28 rows and 5 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores_scorecard_re

Examples

toy_data_scores

An example input data to plot_scores_scorecard_real_estate()

Description

Dataset imitating the input to plot_scores_scorecard_real_estate() function. Allows the user to create plots without PACTA_analysis-like input data.

Usage

toy_data_scores_scorecard_re

Format

An object of class tbl_df (inherits from tbl, data.frame) with 2 rows and 2 columns.

See Also

Other datasets: toy_data_alignment_table, toy_data_diagram, toy_data_emissions_scorecard, toy_data_exposures_scorecard, toy_data_exposures_survey, toy_data_fossil_bars, toy_data_green_brown_bars, toy_data_scatter, toy_data_scores

Examples

toy_data_scores_scorecard_re