Title: | What the Package Does (One Line, Title Case) |
---|---|
Description: | What the package does (one paragraph). |
Authors: | CJ Yetman [aut, cre] , Jackson Hoffart [aut, ctr] , RMI [cph, fnd] |
Maintainer: | CJ Yetman <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.0.0.9000 |
Built: | 2024-10-30 12:23:37 UTC |
Source: | https://github.com/rmi-pacta/pacta.scenario.data.preparation |
Format scenario data for P4B
format_p4b(data)
format_p4b(data)
data |
A scenario data-frame following the format created in the prepare_*.R scripts. |
A scenario data-frame with columns renamed to be consistent with r2dii.analysis target_market_share input requirements.
Format scenario data for P4B
format_p4b_ei(data)
format_p4b_ei(data)
data |
A scenario data-frame following the format created in the prepare_*.R scripts. |
A scenario data-frame with columns renamed to be consistent with r2dii.analysis target_sda input requirements.
Format scenario data for P4I
format_p4i(data, green_techs)
format_p4i(data, green_techs)
data |
A scenario dataset. |
green_techs |
A list of green technologies. For these, a |
A scenario dataset, with columns renamed to be consistent with pacta.data.preparation input requirements.
Interpolate values in a dataset, by year. Interpolate values in a dataset, by year.
interpolate_yearly(data, ...)
interpolate_yearly(data, ...)
data |
An input dataset. Must contain the columns |
... |
Other grouping variables. |
A dataset with the column value
interpolated linearly against the
column year
.
Prepare GECO 2022 scenario data
prepare_geco_2022_scenario( geco_2022_automotive_raw, geco_2022_aviation_raw, geco_2022_fossil_fuels_15c_raw, geco_2022_fossil_fuels_ndc_raw, geco_2022_fossil_fuels_ref_raw, geco_2022_power_15c_raw, geco_2022_power_ndc_raw, geco_2022_power_ref_raw, geco_2022_steel_raw )
prepare_geco_2022_scenario( geco_2022_automotive_raw, geco_2022_aviation_raw, geco_2022_fossil_fuels_15c_raw, geco_2022_fossil_fuels_ndc_raw, geco_2022_fossil_fuels_ref_raw, geco_2022_power_15c_raw, geco_2022_power_ndc_raw, geco_2022_power_ref_raw, geco_2022_steel_raw )
geco_2022_automotive_raw |
A raw GECO 2022 automotive scenario data-frame. |
geco_2022_aviation_raw |
A raw GECO 2022 aviation scenario data-frame. |
geco_2022_fossil_fuels_15c_raw |
A raw GECO 2022 fossil fuels 1.5C scenario data-frame. |
geco_2022_fossil_fuels_ndc_raw |
A raw GECO 2022 fossil fuels NDC scenario data-frame. |
geco_2022_fossil_fuels_ref_raw |
A raw GECO 2022 fossil fuels reference scenario data-frame. |
geco_2022_power_15c_raw |
A raw GECO 2022 power 1.5C scenario data-frame. |
geco_2022_power_ndc_raw |
A raw GECO 2022 power NDC scenario data-frame. |
geco_2022_power_ref_raw |
A raw GECO 2022 power reference scenario data-frame. |
geco_2022_steel_raw |
A raw GECO 2022 steel scenario data-frame. |
A prepared GECO 2022 scenario data-frame.
Prepare GECO 2023 scenario data
prepare_geco_2023_scenario( geco_2023_aviation_15c_raw, geco_2023_aviation_ndc_raw, geco_2023_aviation_ref_raw, geco_2023_fossil_fuels_15c_raw, geco_2023_fossil_fuels_ndc_raw, geco_2023_fossil_fuels_ref_raw, geco_2023_power_cap_15c_raw, geco_2023_power_cap_ndc_raw, geco_2023_power_cap_ref_raw, geco_2023_steel_15c_raw, geco_2023_steel_ndc_raw, geco_2023_steel_ref_raw, geco_2023_supplement_15c_raw, geco_2023_supplement_ndc_raw, geco_2023_supplement_ref_raw )
prepare_geco_2023_scenario( geco_2023_aviation_15c_raw, geco_2023_aviation_ndc_raw, geco_2023_aviation_ref_raw, geco_2023_fossil_fuels_15c_raw, geco_2023_fossil_fuels_ndc_raw, geco_2023_fossil_fuels_ref_raw, geco_2023_power_cap_15c_raw, geco_2023_power_cap_ndc_raw, geco_2023_power_cap_ref_raw, geco_2023_steel_15c_raw, geco_2023_steel_ndc_raw, geco_2023_steel_ref_raw, geco_2023_supplement_15c_raw, geco_2023_supplement_ndc_raw, geco_2023_supplement_ref_raw )
geco_2023_aviation_15c_raw |
A raw GECO 2023 automotive 1.5 scenario data-frame. |
geco_2023_aviation_ndc_raw |
A raw GECO 2023 automotive NDC scenario data-frame. |
geco_2023_aviation_ref_raw |
A raw GECO 2023 automotive Reference scenario data-frame. |
geco_2023_fossil_fuels_15c_raw |
A raw GECO 2023 fossil fuels 1.5 scenario data-frame. |
geco_2023_fossil_fuels_ndc_raw |
A raw GECO 2023 fossil fuels NDC scenario data-frame. |
geco_2023_fossil_fuels_ref_raw |
A raw GECO 2023 fossil fuels Reference scenario data-frame. |
geco_2023_power_cap_15c_raw |
A raw GECO 2023 power capacity 1.5 scenario data-frame. |
geco_2023_power_cap_ndc_raw |
A raw GECO 2023 power capacity NDC scenario data-frame. |
geco_2023_power_cap_ref_raw |
A raw GECO 2023 power capacity Reference scenario data-frame. |
geco_2023_steel_15c_raw |
A raw GECO 2023 steel 1.5 scenario data-frame. |
geco_2023_steel_ndc_raw |
A raw GECO 2023 steel NDC scenario data-frame. |
geco_2023_steel_ref_raw |
A raw GECO 2023 steel Reference scenario data-frame. |
geco_2023_supplement_15c_raw |
A raw GECO 2023 supplemental 1.5 scenario data-frame. |
geco_2023_supplement_ndc_raw |
A raw GECO 2023 supplemental NDC scenario data-frame. |
geco_2023_supplement_ref_raw |
A raw GECO 2023 supplemental Reference scenario data-frame. |
A prepared GECO 2023 scenario data-frame.
Prepare ISF 2021 scenario data
prepare_isf_2021_scenario(isf_2021_power_raw, isf_2021_not_power_raw)
prepare_isf_2021_scenario(isf_2021_power_raw, isf_2021_not_power_raw)
isf_2021_power_raw |
A tidyxl data frame containing a raw import of
|
isf_2021_not_power_raw |
A tidyxl data frame containing a raw import of
|
A prepared ISF 2021 scenario data-frame.
Prepare ISF 2023 scenario data
prepare_isf_2023_scenario( isf_2023_scope_global_raw, isf_2023_s_global_raw, isf_2023_annex_countries_raw )
prepare_isf_2023_scenario( isf_2023_scope_global_raw, isf_2023_s_global_raw, isf_2023_annex_countries_raw )
isf_2023_scope_global_raw |
A tidyxl data frame (with a |
isf_2023_s_global_raw |
A tidyxl data frame (with a |
isf_2023_annex_countries_raw |
A list of tidyxl data frames (with a
|
A prepared ISF 2023 scenario data-frame.
Prepare WEO 2022 scenario data
prepare_weo_2022_scenario( weo_2022_ext_data_regions_raw, weo_2022_ext_data_world_raw, weo_2022_fossil_fuels_raw, weo_2022_nze_auto_raw, weo_2022_nze_steel_raw, weo_2022_sales_aps_auto_raw, weo_2022_electric_sales_aps_auto_raw )
prepare_weo_2022_scenario( weo_2022_ext_data_regions_raw, weo_2022_ext_data_world_raw, weo_2022_fossil_fuels_raw, weo_2022_nze_auto_raw, weo_2022_nze_steel_raw, weo_2022_sales_aps_auto_raw, weo_2022_electric_sales_aps_auto_raw )
weo_2022_ext_data_regions_raw |
A data frame containing a raw import of
|
weo_2022_ext_data_world_raw |
A data frame containing a raw import of
|
weo_2022_fossil_fuels_raw |
A data frame containing a raw import of
|
weo_2022_nze_auto_raw |
A tidyxl data frame with a raw
|
weo_2022_nze_steel_raw |
A data frame containing a raw import of
|
weo_2022_sales_aps_auto_raw |
A data frame containing a raw import of
|
weo_2022_electric_sales_aps_auto_raw |
A data frame containing a raw
import of |
A prepared WEO 2022 scenario data-frame.
Prepare WEO 2023 scenario data
prepare_weo_2023_scenario( weo_2023_ext_data_regions_raw, weo_2023_ext_data_world_raw, weo_2023_fig_chptr_3_raw, iea_global_ev_raw, mpp_ats_raw )
prepare_weo_2023_scenario( weo_2023_ext_data_regions_raw, weo_2023_ext_data_world_raw, weo_2023_fig_chptr_3_raw, iea_global_ev_raw, mpp_ats_raw )
weo_2023_ext_data_regions_raw |
A data frame containing a raw
|
weo_2023_ext_data_world_raw |
A data frame containing a raw
|
weo_2023_fig_chptr_3_raw |
A tidyxl data frame containing a raw import
of |
iea_global_ev_raw |
A data frame containing a raw |
mpp_ats_raw |
A tidyxl data frame containing a raw import of '2022-08-12
|
A prepared WEO 2023 scenario data-frame.
This dataset contains a map of each scenario region name, along with all countries defined within that region (as per the country's ISO2 code).
scenario_regions
scenario_regions
An object of class spec_tbl_df
(inherits from tbl_df
, tbl
, data.frame
) with 1492 rows and 4 columns.
head(scenario_regions)
head(scenario_regions)
Scenario providers often define their own, tailor-made lists of what countries form a region. The entire concept of a region is not standardized and can even change year on year. However, for the purpose of the PACTA transition monitor website, it is useful to have a minimal set of comparable regions, to cycle through different scenarios for. Right now, these regions are the "Global" region, which contains all countries, and the "OECD" and "NonOECD" regions.
This dataset provides a bridge between whatever the scenario has labelled these regions as (e.g. "WORLD"), and the terminology that PACTA uses (e.g. "Global").
scenario_source_pacta_geography_bridge
scenario_source_pacta_geography_bridge
An object of class spec_tbl_df
(inherits from tbl_df
, tbl
, data.frame
) with 15 rows and 3 columns.
head(scenario_source_pacta_geography_bridge)
head(scenario_source_pacta_geography_bridge)