Title: | Measure Climate Scenario Alignment of Corporate Loans |
---|---|
Description: | These tools help you to assess if a corporate lending portfolio aligns with climate goals. They summarize key climate indicators attributed to the portfolio (e.g. production, emission factors), and calculate alignment targets based on climate scenarios. They implement in R the last step of the free software 'PACTA' (Paris Agreement Capital Transition Assessment; <https://www.transitionmonitor.com/>). Financial institutions use 'PACTA' to study how their capital allocation decisions align with climate change mitigation goals. |
Authors: | Jacob Kastl [aut, cre, ctr] |
Maintainer: | Jacob Kastl <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.5.1.9000 |
Built: | 2025-02-19 16:24:31 UTC |
Source: | https://github.com/rmi-pacta/r2dii.analysis |
A table of column names and descriptions of data frames used or exported by the functions in this package.
data_dictionary
data_dictionary
data_dictionary
Name of the dataset
Name of the column
Type of the column
Definition of the column
data_dictionary
data_dictionary
This function calculates targets of CO2 emissions per unit production at the portfolio-level, otherwise referred to as "emissions factors". It uses the sectoral-decarbonization approach (SDA) to calculate these targets.
target_sda( data, abcd, co2_intensity_scenario, use_credit_limit = FALSE, by_company = FALSE, region_isos = r2dii.data::region_isos )
target_sda( data, abcd, co2_intensity_scenario, use_credit_limit = FALSE, by_company = FALSE, region_isos = r2dii.data::region_isos )
data |
A dataframe like the output of
|
abcd |
An asset-level data frame like r2dii.data::abcd_demo. |
co2_intensity_scenario |
A scenario data frame like r2dii.data::co2_intensity_scenario_demo. |
use_credit_limit |
Logical vector of length 1. |
by_company |
Logical vector of length 1. |
region_isos |
A data frame like r2dii.data::region_isos (default). |
A tibble including the summarized columns emission_factor_metric
and
emission_factor_value
. If by_company = TRUE
, the output will also have
the column name_abcd
.
This function ignores existing groups and outputs ungrouped data.
Other functions to calculate scenario targets:
target_market_share()
library(r2dii.match) library(r2dii.data) loanbook <- head(loanbook_demo, 150) abcd <- head(abcd_demo, 100) matched <- loanbook %>% match_name(abcd) %>% prioritize() # Calculate targets at portfolio level matched %>% target_sda( abcd = abcd, co2_intensity_scenario = co2_intensity_scenario_demo, region_isos = region_isos_demo ) # Calculate targets at company level matched %>% target_sda( abcd = abcd, co2_intensity_scenario = co2_intensity_scenario_demo, region_isos = region_isos_demo, by_company = TRUE )
library(r2dii.match) library(r2dii.data) loanbook <- head(loanbook_demo, 150) abcd <- head(abcd_demo, 100) matched <- loanbook %>% match_name(abcd) %>% prioritize() # Calculate targets at portfolio level matched %>% target_sda( abcd = abcd, co2_intensity_scenario = co2_intensity_scenario_demo, region_isos = region_isos_demo ) # Calculate targets at company level matched %>% target_sda( abcd = abcd, co2_intensity_scenario = co2_intensity_scenario_demo, region_isos = region_isos_demo, by_company = TRUE )